f(x)=ln(5x^2+sqrt(9x^4+3))

Simple and best practice solution for f(x)=ln(5x^2+sqrt(9x^4+3)) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for f(x)=ln(5x^2+sqrt(9x^4+3)) equation:


Simplifying
f(x) = ln(5x2 + sqrt(9x4 + 3))

Multiply f * x
fx = ln(5x2 + sqrt(9x4 + 3))

Reorder the terms:
fx = ln(5x2 + qrst(3 + 9x4))
fx = ln(5x2 + (3 * qrst + 9x4 * qrst))
fx = ln(5x2 + (3qrst + 9qrstx4))

Reorder the terms:
fx = ln(3qrst + 9qrstx4 + 5x2)
fx = (3qrst * ln + 9qrstx4 * ln + 5x2 * ln)
fx = (3lnqrst + 9lnqrstx4 + 5lnx2)

Solving
fx = 3lnqrst + 9lnqrstx4 + 5lnx2

Solving for variable 'f'.

Move all terms containing f to the left, all other terms to the right.

Divide each side by 'x'.
f = 3lnqrstx-1 + 9lnqrstx3 + 5lnx

Simplifying
f = 3lnqrstx-1 + 9lnqrstx3 + 5lnx

See similar equations:

| 3(-1-y+1)=2(-1-y)-1 | | -29=z/14-23 | | 3y-2(0)=4 | | (x+1)(x-1)+(x+1)(2x-4)=0 | | 16x+5=2x+1 | | T^2-20.2t-40.4=0 | | 5(a+10)=135 | | 4x^2+5=30 | | 5x/4*1.2 | | x^2+ir+1=0 | | 1/17x=0 | | x^2+3x-0.5=0 | | 2x+2=168 | | x(x^2-3x^1)=0 | | x-3/6=8 | | (x+1)/4=(x-2)/3 | | 168=(7/11)x | | x(x^2-3x)=0 | | 4=(2/9)x | | 2a+3b-5a=7b+2 | | 14=(7/9)x | | 5b+4=35 | | 2(8x+5)=-21 | | 6=2x(4-x) | | 2x*3x=108900 | | 40-4y=y | | 3(X+1)+7=4x+2-3(2-X) | | 13x-232=3x-12 | | 5x-12=7x/2 | | 4+0.5y=x | | e^(7/x)=0 | | 9(x+6)=15 |

Equations solver categories